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Abstract

Super-pixels provide an efficient low/mid-level represen-
tation of image data, which greatly reduces the number of
image primitives for subsequent vision tasks. Analogy to
super-pixel defined on 2D images, clique on point clouds
represents a cluster of points that share the same proper-
ties (e.g., colors, semantics, or local geometries). However,
existing grouping algorithms are not differentiable, making
them hard to be integrated into standard deep neural net-
works. We propose a novel framework for end-to-end learn-
ing this useful abstraction through specified downstream
tasks. Instead of computing the hard association that is
adopted in most clustering algorithms, we compute the soft
association between points and cliques, which makes the
clique computation fully differentiable. Experiments with
different point cloud analysis tasks on major benchmarks
demonstrate the effectiveness of our proposed method.

1. Introduction
Super-pixels are the image regions generated by group-

ing image pixels. Comparing to pixels, super-pixels pro-
vides a perceptually meaningful tessellation of image con-
tent, thereby reducing the number of image primitives for
subsequent image processing. Owing to their representa-
tional and computational efficiency, super-pixels have be-
come an established low/mid-level image representation
and are widely-used in computer vision algorithms such as
detection [10, 9], semantic segmentation [2, 8, 1], object
tracking [12] and saliency prediction [4, 11]. Super-pixels
are especially widely-used in traditional energy minimiza-
tion frameworks, where a low number of image primitives
greatly reduce the optimization complexity.

Analogy to super-pixel defined in image space, we de-
fine clique on point clouds, which represent a cluster of
points that share the same properties (e.g., colors, seman-
tics, or local geometries). Our motivation is that by group-
ing the point cloud representation in local scales, the inter-
mediate abstraction can simplify and ease the learning of
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downstream prediction tasks. In addition, the input point
cloud may not evenly distributed in the spatial domain, we
leverage the learnt clique to adjust the spatial density of
the point representation. However, existing grouping algo-
rithms are not differentiable, making them hard to be in-
tegrated into standard deep neural networks. Some liter-
atures [3, 5] on clustering algorithms propose to replace
the hard assignment with soft association, which makes
the grouping step end-to-end trainable. Inspired by their
works, we propose a novel framework for Differentiable
Point cloud Grouping (DPGNet) that allow learning of this
useful abstraction through specified downstream tasks. To
this end, our contributions are as follows:

• We implement a soft-clustering module for point cloud
feature grouping which enables end-to-end training.

• The proposed soft-clustering module can be easily in-
tegrated into standard deep learning framework, which
allows learning of task-specific mid-level abstraction.

• We evaluate our DPGNet on different point cloud
analysis tasks on major benchmarks, our experiments
demonstrate that the learnt representation can boost the
performance of subsequent tasks.

2. Related Work

There have been many methods proposed for the task of
superpixel proposal for images. They can broadly be cat-
egoried as either graph-based approach or clustering-based
approach. However, the majority of these either operates on
discrete variables, or requires handcrafted feature represen-
tation. These constraints limit their applicability into and
end-to-end differentiable pipeline. Superpixel Sampling
Network proposes to replaces the hard pixel-superpixel as-
sociation in SLIC with soft association, thereby allows for
gradients to back-propagated through the iterative cluster-
ing computation. Their method allows for the integration of
learnable feature representation and clustering assignment
into an end-to-end differentiable pipeline. However, their
method has only been demonstrated for computer vision
tasks in pixel domain, and not 3D domain.
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Task-driven Differentiable Grouping:

PointNet++ Differentiable 
Grouping Task specific lossPoint cloud

The module optimize the embedding space to enforce the local feature 
consistency. 

The learnt mid-level abstraction can be used to discover geometry 
primitives as well as simplify the downstream tasks.

We implement a differentiable grouping module and combine it with 
off-the-shelf point cloud analysis frameworks.

(point cloud is not evenly distributed in the space, we hope the mid-level 
abstraction can somehow helps to adjust the spatial density ...)

Figure 1. Illustration of the proposed DPGNet.

In the 3D domain, there are also works which propose
clique, the equivalent of superpixel for point cloud repre-
sentation. However, the cliques are proposed based on sim-
ple k-means clustering with hand-tuned clustering hyper-
parameter and is unable to adapt to the statistical patterns
presented in the data.

3. Proposed Method and Implementations
This section describes our extension of differentiable

grouping to 3D data.

3.1. Differentiable Grouping

In this section we introduce our implementation of the
differentiable grouping module. Instead of computing hard
point-clique associations, we propose to compute soft-
associations between points and cliques. Specifically, for
a point p and clique i at iteration t, let k be the feature di-
mension, n and m be the number of point and number of
clique, Fp ∈ Rk be the feature vector of point p, Si ∈ Rk

be the feature of clique i. We first compute soft-associations
matrix Q ∈ Rn×m:

Qt
pi = e−||Fp−St−1

i ||2 (1)

Correspondingly, the computation of new clique centers
is modified as the weighted sum of point features,

St
i =

1

Zt
i

n∑
p=1

Qt
piFp, (2)

where Zt
i =

∑
pQ

t
pi is the normalization constant. The

size of Q is n ×m and even for a small number of cliques
m, it is prohibitively expensive to compute Qpi between
all the points and cliques. Therefore, we constrain the dis-
tance computations from each pixel to only 27 surrounding
cliques. This brings down the size of Q from n × m to
n×27, making it efficient in terms of both computation and
memory.

3.2. Learnable Clique for 3D Vision Tasks

We propose to integrate the differentiable grouping mod-
ule with standard deep learning network (shown in Fig 1),
the resulting novel framework (DPGNet) allow end-to-end
learning of the point cloud feature clustering. In this sec-
tion we describe the potential applications of our proposed
DPGNet.

Figure 2. Architecture of PointNet++

Classification Point cloud classification aims to predict a
category label of the input point cloud. Such task require a
comprehensive understanding of the whole shape as well as
the geometry relationship between each part. In order to im-
prove the recognition accuracy, we embed the proposed dif-
ferentiable grouping module with off-the-shelf point cloud
feature extractors (i.e., PointNet [6], PointNet++ [7]). The
clustered feature points are then fused to predict the final
results. Our motivation is that the input point cloud is not
evenly distributed in the space, the iterative grouping pro-
cess acts as a role of adjusting the spatial density as well as
aggregating local and global information.
Part Segmentation Part segmentation is a challenging
fine-grained 3D recognition task. Given a point cloud or
mesh, the task is to assign part category label (e.g. chair
leg, cup handle) to each point or face. We leverage the pro-
posed differentiable grouping module to optimize the em-
bedding space and enforce the local feature consistency, the
mid-level abstraction thus can be used to discover geometry
primitives as well as simplify the downstream tasks.
Semantic Scene Parsing Our proposed DPGNet on part
segmentation can be easily extended to semantic scene
segmentation, where point labels become semantic object
classes instead of object part labels.

3.3. Integrating differentiable grouping into Point-
Net++

In SSN, a convolutional network extracts feature for each
pixel which are then used to perform differentiable group-
ing and produce the intermediate representation for down-
stream tasks. A straight-forward extension of this pipeline
to 3D data, such as point cloud, would include introducing
a multi-layer perceptron (MLP) to extract the feature for
each point. It would then perform iterative grouping using
the exponential of negative norm of difference to compute
the similarity between cluster centroid and points and using
the weighted sum function to compute new features for the
cluster centroids. Additionally, SSN selects the initial cen-
troid positions as the nodes in a 2d grid super-imposed on
the image. For 3D data, we can use the nodes of a uniform
3d meshgrid as the initial positions of the centroids.
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We found that a straight-forward integration of differen-
tiable grouping, as described above, into PointNet++ was
not possible due to the current design choices in Point-
Net++ (discussed in more details below). The architecture
of PointNet++ are shown in Figure 2. The Set Abstrac-
tion Layer performs point grouping and feature aggregation
through these three steps:

1. Iterative FPS to find centroids

2. Ball querying to find nearby points for each centroids

3. Compute features for each centroids with PointNet

As can be seen, PointNet++ already performs group-
ing of points and feature aggregation of points within one
group. Instead of using the nodes of a uniform 3d meshgrid
as the initial positions of the centroid, PointNet++ uses it-
erative furthest point sampling (FPS). PointNet++ also uses
PointNet to aggregate features of the points within one clus-
ter and compute the feature of the cluster centroid instead of
the weighted sum operation in SSN.

In contrast to the grouping operation in SSN, the group-
ing in PointNet++ is not iterative and is not differentiable.
The relevant question is then how to use the motivations
of differentiable clustering in SSN to improve the group-
ing operation in PointNet++. We propose to modify the Set
Abstraction Layer as described:

Algorithm 1 Iterative Differentiable Grouping
Initialize centroids xyz
for iter do
group xyz = BallQuery(xyz)
for all centroid do
dist = ||points feat− centroid feat||2
sim = exp(−dist)
new xyz =

∑
sim ∗ point xyz

end for
Use PointNet to compute new centroid feat

end for
return centroid xyz centroid feat

To compute the distance between the centroid and nearby
point, we also use the weighted sum function as is in done in
SSN. However, this is not possible with the default setting
in PointNet++ because the features of centroids and points
have different number of dimension. We change Point-
Net++ so that the features of centroids and points have the
same number of dimension. We re-run PointNet++ on the
task of classification to confirm that this does not signifi-
cantly affect performance, as can be seen in Table 1.

4. Experimental Results
In this section, we first present our reproducing results

for previous SSN paper, then we report our experiments on

Method Accuracy
PointNet++ 0.905 (std 0.002)
PointNet++ same dimensionality 0.902 (std 0.003)

Table 1. Point cloud classification experiments on ModelNet40
dataset. Accuracy is computed as the mean of 3 different runs.

Figure 3. Toy experiments for verifying the differentiable grouping
module. The first column, second column, and last column repre-
sent the input feature, initial super-pixels, and final super-pixels
after 5 iterations, respectively.

extending the differentiable grouping module to 3D learn-
ing tasks.

4.1. Toy Examples

To verify the correctness of the differentiable SLIC mod-
ule, we conduct several toy experiments. We first random
generate some boxes and circles that distributed in the 2D
world, where each object is represented by pure RGB col-
ors. We assume the inputs to the differentiable SLIC mod-
ule are perfect feature without any noise. We run our differ-
entiable SLIC module directly on the input feature, and get
the super-pixel ID for each input pixel. We mask the bound-
ary between of each super-pixel (see Figure 3 for more de-
tails). The oracle experiments demonstrate that the differ-
entiable SLIC module works very well.

4.2. Reproducing SSN Results

We re-implement the pipeline introduced in Superpixel
Sampling Network (SSN) and obtained almost the same
performance as SSN on the BSDS500 dataset. We use
the same experimental setting as in the SSN paper, where
training is performed with 100 super-pixels and testing
is performed with varying number of super-pixels, usu-
ally much larger than 100. We measure the performance
of our pipeline using mean Achievable Segmentation Ac-
curacy (ASA), which represents the upper bound on the
accuracy achievable by any segmentation step performed
on the super-pixels. Figure 6 illustrates the performance
of our re-implementation for different number of super-
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Figure 4. Figure 5 in the SSN paper. The figure demonstrates the
performance of SSN as the number of superpixel increases during
evaluation.

Figure 5. Super-pixel segmentation results in BSR dataset. Maxi-
mum super-pixel number is set to 100.

pixels used during evaluation. Comparing Figure 6 and
Figure 4, we observe that our re-implementation obtains
slightly worse performance than shown in the SSN’s paper.
However, we argue that this is due to small implementation
details and our re-implementation preserves the main per-
formance characteristics of SSN: as the number of superpix-
els used during evaluation increases, the performance also
increases. Trained with the 100 superpixels setting, our re-
implementation was also able to generalize to testing setting
where more than 100 superpixels are used. Figure 5 shows
some qualitative results of re-implemented SSN.

4.3. Point Cloud Part Segmentation

We perform the algorithm we discussed in section 3.3
into the PointNet++ [7] pipeline. We trained and tested on

Figure 6. Test result using the SSN module trained 15,000 itera-
tions. During the test, the slic module runs 10 times. ASA scores
increases as the number of super pixels increases.

Method Accuracy IoU
PointNet++ 93.25 83.48
Ours(iter=1) 93.30 83.82
Ours(iter=2) 93.19 83.43
Ours(iter=3) 93.49 83.71
Ours(iter=5) 93.22 83.68

Table 2. Point cloud segmentation experiments. Iter stands for
the number of iteration we perform differentiable grouping in the
pipeline.

the ShapeNet dataset with 16 classes and 50 different parts.
The train, validation and test split follows the original split
of the benchmark. We adopt Adam stochastic optimization
with a batch size of 16 and decaying learning rate with ini-
tial learning rate of 0.001 and γ of 0.5. We trained for
250 epochs and preserve the best model according to the
validation results. The performance of part segmentation
is measured using two evaluation metrics: one is part seg-
mentation accuracy, and the other is intersection over union
(IoU). We performed the experiments on 5 models includ-
ing the baseline, and tested how the iterations of differen-
tiable grouping affects the performance. The result is as
follow,

Some qualitative results are also given here. As we can
see in Figure 7, our model outperforms the original Point-
Net++ in most joints in the shape. This is expectable, as
multiple iterations of differential SLIC will group points
that are similar in feature spaces, separating parts from one
another much better. This can also be seen in the 2D cases
where boundaries of the semantic segmentation are largely
preserved in the super pixel segmentation.

5. Conclusion and Future Works
In this project we replicate previous work on differen-

tiable super-pixel learning [5], we achieve comparable per-
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Figure 7. Test results from the ShapeNet. In the error map, red dots
stand for a failure. In this test, our model performs differentiable
grouping for three times in the pipeline.

formance with their official experimental setting. We fur-
ther extend the idea of differentiable grouping to 3D learn-
ing tasks. Extensive experiments demonstrate the feasibil-
ity of this kind idea. For future works, we plan to generalize
this framework to other 3D learning tasks, i.e., point cloud
normal estimation, correspondence matching, etc.
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